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ABSTRACT

This work is the result of a feasibility study performed to establish if an artificial neural controller
could be used to achieve joint space trajectory tracking of a two-link robot manipulator. This study is based
on the results obtained by Hecht-Nielsen [4], who claims that a functional map can be implemented to a
desired degree of accuracy with a three-layer feedforward artificial neural network. Central to this study is
the assumption that the robot model as well as its parameters values are known.

INTRODUCTION

The recent explosion of artificial neural networks applications in virtually every science and
engineering discipline has motivated control engineers to look into the possibility of using these types of
networks to solve problems whose solutionsare very hard to find [1], e.g., a robust controller for a nonlinear
system.

Researchers [2,3] have already shown that multilayer feedforward artificial neural networks can be
used to solve pattern recognition (mapping) problems. Furthermore, Hecht-Nielsen [4] has "shown"
mathematically that an I_2 function (mapping) from [0,1]n to it m can be implemented to any desired degree
of accuracy with a three-layer feedforward artificial neural network.

Let us now consider the dynamic model of an n-degree of freedom robot manipulator with revolute
joints given by

= M(0)6 + V(e,6) + F(6) + G(e) , (1)

where

Let

A nxl vector of joint torques.
9,B and 6 , nxl vectors representing the angular positions, velocities and accelerations,

respectively, of the links.
M(e). A nxn inertia matrix.
V(.8,0) A nxl vector of torques arising from centripetal and coriolis forces.
F(e) ,, nxl friction torque vector.
G(0) A nxl vector of torques due to gravity.

f(0,0,0) ,, M(O)B . V(0,6) + F(e) + G(0),

then
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= f(e,e,B). (2)

If f is a continuously differentiable function, I.e., every term on the right-hand side of (1) is

continuously differentiable (this is a somewhat restrictive requirement for a practical manipulator), then in

the light of the result obtained by Hecht-Nielsen [4] the function f that represents the robot dynamics can
be implemented (identified) with a three-layer feedforward artificial neural network.

Let Nf[e,(_,_;w] denote the feedforward artificial neural network that identifies f(0,(),e), where w

represents the weights or input strengths to the artificial neurons, then if the number of neurons in the

hidden layer increases to infinity, Nf - f (see [5]). Furthermore, if

= Nf[e,(),B;w] + (_ + kre , (3)

where e i er-e,
6r - nxl vector of reference trajectories,

kp A nxn diagonal positive definite matrix,

then upon substitution of (3) into (1) yields e + kpe - 0 also, i.e., e - 0 which implies that 6 - 6r.

The controller (3) is the equivalent of the well-known method of computed torque [6].

IDENTIFICATION OF ROBOT DYNAMICS USING ARTIFICIAL NEURAL NETWORKS

Consider the two-link direct drive robot manipulator shown in Fig. 1.

X_

Fig. 1. Two-link robot manipulator.

The dynamic model of this manipulator (excluding friction and external loads) is given by [7]

_1 = I al+a2cOse2
a3+ _ cose 61 -a= 61_2 + 2 sine=

+

6,'sine2
+ a4cose 1+ascos(e _+62) 1

asCOS(e I +e_ j

(4)
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where a1.....as are constant parameters that depend on the lengths (_1,12)and the masses (ml,m2).

For this particular study, we will use the numerical values of the link parameters that correspond to
links 2 and 3 of the Unimation Puma 560 robot manipulator [7], i.e., Q1= t2 = 0.432 m; m1 = 15.91 kg and
m2 = 11.36 kg. Using these values, we get:

a1 = 3.82
a2 = 2.12
a3 = 0.71
a4 = 81.82
a5 = 24.06.

Postulating the problem in the framework of artificial neural networks, we would like to design a
network to synthesize the mapping 1: = f(O,(],6), where

f(0,6,8) = (3"82*2"12C2)el+(O'71+1"O6C_e2-2"12S 6162+ 6 +81.82C1+24.06C_ (5)

[ (0.71 +1.06C2)a , +0.7102+ 1.06S2(62) +24.06C,2 J

where Ci A cosO i

Si A sinei
Cij _ COS(8i+ ej)

In our approach we use a so-called connectionist architecture that attempts to identify the complete
dynamic equation [8]. This is shown schematically in Fig. 2.
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Fig. 2. Learning robot dynamics.

where _d a

e a

¢dl]

Cd2J

_d - _

desired torques

torques generated by the artificial neural network
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Although the input and output spaces for the two-degree of freedom manipulator is not as large as
that of a six-degree of freedom one, it was found experimentally using 4000 8-tuplets (inputs), a four-layer

feedforward network with 200, 300, and 400 neurons in each of the two hidden layers and several learning

rates (0.7, 0.8, 0.9, 1.0, 1.1), that learning stalled at about 10% of the input-output pairs. In fact, every one
of these training runs took several days to execute.

We would also like to point out that three-layer networks with a large number of neurons in the

hidden layer were found to perform even worse than the four-layer networks.

It therefore appears that multilayered feedforward artificial neural networks as presently formulated

are not of practical use in the identification and control of relatively simple robotic manipulators despite the
claims made by many researchers.

CONCLUSIONS

Although Hecht-Nielsen [4] "has proved" that a function (map) can be implemented to a desired

degree of accuracy with a three-layer feedforward artificial neural network, a great deal of care must be

exercised in interpreting his result, because a very large number of neurons in the hidden layer may be
required to learn a functional map, thus rendering these types of networks impractical to implement true
neural controllers for robotic manipulators. Therefore, in the opinion of the author, feedforward artificial

neural networks as presently conceived, are of no practical use to control robots.
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